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Interaction of isotropic turbulence with shock
waves: effect of shock strength
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(Received 11 November 1994 and in revised form 8 October 1996)

As an extension of the authors’ work on isotropic vortical turbulence interacting
with a shock wave (Lee, Lele & Moin 1993), direct numerical simulation and linear
analysis are performed for stronger shock waves to investigate the effects of the
upstream shock-normal Mach number (M1). A shock-capturing scheme is developed
to accurately simulate the unsteady interaction of turbulence with shock waves.
Turbulence kinetic energy is amplified across the shock wave, and this amplification
tends to saturate beyond M1 = 3.0. An existing controversy between experiments
and theoretical predictions on length scale change is thoroughly investigated through
the shock-capturing simulation: most turbulence length scales decrease across the
shock, while the dissipation length scale (ρq3/ε) increases slightly for shock waves
with M1 < 1.65. Fluctuations in thermodynamic variables behind the shock wave are
nearly isentropic forM1 < 1.2, and deviate significantly from isentropy for the stronger
shock waves, due to the entropy fluctuation generated through the interaction.

1. Introduction
The interaction between shock waves and turbulent boundary layers is common

in high-speed flows. A fundamental understanding of the interaction is important
to develop engineering models. There has been a significant accumulation of experi-
mental data on shock/turbulence interaction during the last decade. The interaction
of turbulent boundary layers with a shock wave over a compression corner was
investigated by Dolling & Or (1985), Andreopoulos & Muck (1987), and Smits &
Muck (1987). A general finding from these experiments is that Reynolds shear stress
and turbulence intensities are amplified across the shock wave. The studies of oblique
shock wave/turbulent boundary layer interaction include several additional complex
phenomena, such as wall proximity, unsteady shock stem movement, boundary layer
separation, and boundary layer curvature along the compression corner (Honkan
& Andreopoulos 1992). To isolate the effects of a shock wave on turbulence, sev-
eral experiments (Debieve & Lacharme 1986; Keller & Merzkirch 1990; Honkan &
Andreopoulos 1992) on the interaction between the shock wave and grid-generated
turbulence have been performed. An important finding is that turbulence is amplified
and turbulence length scales increase across the shock wave. However, the increase
in the length scale contradicts the intuitive expectation that mean flow compres-
sion should decrease the relevant turbulence length scales. This issue of length scale
change across the shock will be discussed extensively in the present paper. Recently,
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Barre, Alem & Bonnet (1996) have experimentally studied the interaction of quasi-
homogeneous turbulence with a normal shock wave at M1 = 3. Amplification of
turbulence in accord with Ribner’s theory, and a substantial decrease of the longi-
tudinal integral scale across the shock is reported. These findings are in qualitative
agreement with results of the present paper.

Small-amplitude fluctuations in compressible turbulence can be decomposed into
three modes of mutually independent fluctuations: vortical, acoustic, and entropic
(Kovásznay 1953). Any one of the elementary waves interacting with a shock wave
generates all three modes of fluctuations downstream of the shock wave. Since the
1950s, linear interaction analyses (LIA) on the modification of elementary distur-
bance waves by the shock wave have been performed with an emphasis on the
acoustic wave generation behind the shock wave (Ribner 1953, 1954, 1987; Moore
1953; Kerrebrock 1956; Chang 1957; McKenzie & Westphal 1968). Through the
linear analyses, turbulent fluctuations downstream of the shock wave are expressed
in terms of the orientation, amplitude, and length scale of an incident elementary
wave. Inspection of the linear analysis reveals three major factors in the interac-
tion: mean flow compression across the shock, shock front curvature, and unsteady
shock front movement. In general, fluctuations are found to be amplified with length
scales decreased across the shock wave. Significant acoustic noise is also found to
be generated due to the interaction of vortical turbulence with the shock wave. The
linear analysis was revisited by Anyiwo & Bushnell (1982) to identify primary mech-
anisms of turbulence enhancement: amplification of the vorticity mode, generation of
acoustic and entropy modes from the interaction, and turbulence ‘pumping’ by shock
oscillations. Zang, Hussaini & Bushnell (1984) performed numerical computations of
elementary waves interacting with a shock wave to investigate the effects of shock
strength, incidence angle and amplitude of incoming waves on the applicability of
the linear analyses. It was found that the linear analyses were valid for wide range
of these parameters. For waves incident near the critical angle significant nonlinear
effects were also noted. Recently, the applicability of homogeneous rapid distortion
theory (RDT) on shock/turbulence interaction was investigated by Jacquin, Cambon
& Blin (1993). RDT was found inappropriate for the analysis of shock/turbulence
interaction, since the shock front curvature and the shock front unsteadiness cannot
be accounted for in the analysis.

Numerical simulations of the shock/turbulence interaction are just beginning to
emerge. Using a shock-capturing numerical technique on the Euler equations, Rotman
(1991) calculated the change in a two-dimensional turbulent flow caused by the
passage of a travelling shock wave. He found that the shock causes an increase in the
turbulent kinetic energy and that turbulence length scales are reduced upon passage of
the shock. Lee, Lele & Moin (1991a) and Lee, Moin & Lele (1992b) conducted direct
numerical simulations of two- and three-dimensional turbulence interacting with a
shock wave. They found that the vorticity amplification compared well with the linear
analysis predictions, and turbulent kinetic energy undergoes a rapid increase behind
the shock wave. The spectrum was found to be enhanced more at large wavenumbers,
leading to an overall length scale decrease. The unsteady corrugation of the shock
front was examined. The characteristic speed and slope of the corrugated shock front
were found to scale with the upstream r.m.s. velocity fluctuation and the upstream
turbulence intensity, respectively.

This paper is an extension of the work of Lee, Lele & Moin (1993) on isotropic
turbulence interacting with a weak shock wave, where the upstream mean flow Mach
number, M1, was less than 1.2. In the present paper the interaction of isotropic



Interaction of isotropic turbulence with shock waves 227

turbulence with stronger shock waves is studied. Our objective is to investigate the
effects of shock strength on turbulence modification. Numerical simulation and linear
analysis are used for this purpose. This paper is organized as follows. §2 discusses the
development and validation of the numerical scheme. Ribner’s (1954) linear analysis is
also briefly summarized. Results from the simulations and analysis are then presented
in section 3. The influence of shock Mach number on the turbulent kinetic energy,
turbulence length scale, and thermodynamic fluctuations is discussed. The exisiting
controversy on the influence of the shock on the turbulence length scale is emphasized.

2. Numerical simulation and linear theory
2.1. Shock-capturing scheme

For the direct numerical simulation (DNS) of the interaction of isotropic turbulence
with a weak shock wave, the shock wave structure was resolved as a solution of the
Navier–Stokes equations. In addition, all the essential turbulence scales were resolved
(Lee et al. 1993). However, for stronger shock waves resolving the shock structure is
unnecessary since the Navier–Stokes equations are no longer valid inside the shock
wave (see e.g. Sherman 1955). Furthermore the thickness of the shock decreases as
its Mach number increases, making it extremely difficult to cope numerically with
very thin shocks. Traditional central difference schemes generate spurious oscilla-
tions if sharp gradients in the solution are not resolved. Therefore, a shock-capturing
scheme is necessary. The shock-capturing scheme is required to be high-order accurate
throughout the computational domain (to properly simulate the evolution of turbu-
lence) as well as to be able to give a smooth and accurate transition across the shock
wave. The shock-capturing scheme used in this work is an essentially non-oscillatory
(ENO) scheme (Harten & Osher 1987; Shu & Osher 1989), which can be constructed
to a high order of accuracy. The ENO scheme used in this paper is based on the Lax–
Friedrichs scheme with an interpolation on fluxes. For two- and three-dimensional
cases the ENO scheme is applied independently for fluxes in each direction (Shu &
Osher 1989). Some modifications (described below) were made to the basic scheme to
improve the solution accuracy, and to enhance the code performance.

The ENO scheme was first evaluated by computing the spatially decaying compress-
ible turbulence without shocks. The order of the ENO scheme required to reproduce
the evolution of turbulence was assessed. During the validation procedure, an unex-
pected degeneracy in accuracy was observed with the increase in the order of the ENO
scheme. Similar degeneracy was reported by Rogerson & Meiberg (1990) when the
mesh was refined. This degeneracy was determined to be caused by the use of linearly
unstable stencils in the adaptive procedure. Biasing toward a central difference stencil
was implemented to avoid the accuracy degeneracy in a shock-free region (Shu 1990).
With this modification, more accurate results were obtained with raising the order of
accuracy. Results comparable to those obtained with a sixth-order-accurate central
Padé scheme was obtained with a sixth-order ENO scheme.

When the ENO scheme is implemented throughout the domain, the operation count
and, accordingly the CPU time, increase significantly compared to the Padé scheme.
However, the region where the ENO scheme plays a significant role is quite localized.
It was usually less than a tenth of the computational domain in our DNS of weak
shock waves, and was expected to be even smaller for stronger shock waves. The
idea of applying the ENO scheme only where it plays an active role and switching
elsewhere to the usual Padé central differencing was therefore tested. Switching to the
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Figure 1. Figure 1. Snapshots of vorticity (ω3) contours in shock/turbulence interaction with
M1 = 2.0 at (a) tc/L1 = 1.951, (b) tc/L1 = 2.053, where L1 is the computational box size in the
x1-direction: solid lines, ω3 > 0; dashed lines, ω3 < 0; Superposed contours near the centre of each
plot are constant-dilatation lines, denoting an instantaneous shock location.

Pade scheme beyond the region occupied by the shock is justified a posteriori by the
smoothness of the computed solution across such transitions. The local region of ENO
application can be specified a priori to be a zone around the shock for a simulation
performed in a coordinate system fixed on the mean shock wave. The concept of local
application of the ENO scheme was validated against fully resolved DNS results, both
for the case of two-dimensional shock turbulence interaction (Lee et al. 1991a) with
M1 = 1.2,Mt = 0.07 and the case of three-dimensional spatially decaying turbulence
(Lee et al. 1992b) with Mt = 0.51 and Reλ = 25. Here, M1 = u1/c,Mt = q/c, and

Reλ = ρurmsλ/µ, where urms = (ũ′′1
2)1/2, q2 = ũ′′i u

′′
i , c is the sound speed, λ is a Taylor

microscale, and µ is the dynamic viscosity. The overline denotes an ensemble average,
and f′ and f′′ are the deviations from the ensemble average and the mass-weighted

average (Favre 1965) f̃ = ρf/ρ, respectively.
The next validation computation was to reproduce the three-dimensional interaction

of turbulence with a weak shock using the ENO scheme. The results were compared to
our past shock-resolving computations. Significant additional dissipation of turbulent
kinetic energy (TKE) was found in the shock vicinity where the ENO scheme was
applied independently in all directions. This dissipation was less pronounced in two-
dimensional shock-turbulence simulations. From a numerical point of view, the ENO
procedure is a type of upwind difference and has an additional numerical dissipation,
or viscosity, in regions of steep gradients. Since steep gradients in turbulent flows occur
at small scales the ENO scheme, when applied over the entire flow domain, may give
undesirable damping of turbulence. In the present problem the location of the shock
is known a priori and it is natural to introduce the ENO scheme only in a specific
direction (normal to the undisturbed shock) in a zone surrounding the shock wave.
Since the change in the shock normal direction due to the unsteady shock distortions
is only about 1% as shown by Lee et al. (1993), the flow variables do not change
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Figure 2. Evolution of (a) the streamwise and (b) the transverse velocity fluctuation variance for
different grid resolutions (M1 = 2.0,Mt = 0.07). DNS: , r∆ = 3/160. ENO: , r∆ = 3/40;

, r∆ = 1/8; , r∆ = 3/8; • , r∆ = 3/4.

as rapidly in the directions transverse to the shock; one-dimensional application of
ENO scheme in the mean shock normal direction is found to be sufficient for shock
capturing. This also significantly reduces the computational expenses. For M1 = 1.2,
the ENO scheme required only a quarter of the CPU time of the corresponding
shock-resolving simulation (Lee 1992).

The final validation calculation was made for two-dimensional turbulence interact-
ing with a strong shock wave. A typical time sequence of vortical structures interacting
with the shock wave is shown in figure 1(a, b), where advection of vortical structures
and their interaction with the shock wave are clearly observed. Deformation and
amplification of the vortical structures are to be noted as they pass through the shock
wave. The evolutions of velocity fluctuation variances is shown in figure 2 for differ-
ent resolutions near the shock wave. A non-uniform grid was used in the streamwise
direction such that points were clustered around the shock, while a uniform grid
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was used in the transverse direction. The sixth-order-accurate ENO shock-capturing
scheme was activated only at 12 points upstream and 12 points downstream of the
mean shock position. This was sufficient in the present simulation to cover the region
instantaneously occupied by the shock wave during its unsteady motion. This region
was determined by considering the estimate of shock front displacements predicted
by LIA (Lee et al. 1992b). Since the shock wave was always included in the region of
ENO application, the interface of scheme transition could not be discerned from the
simulation results.

The turbulence at the inflow of the computational domain was generated to
have an energy spectrum, E(k) ' u2

o(k/ko)
4 exp[−2(k/ko)

2], where ko is the peak
wavenumber and uo is the r.m.s. velocity fluctuation. This spectrum was chosen as
a good representation of low-Reynolds-number DNS. The von Kármán spectrum
(Hinze 1975)

E(k) ' u2
o

(k/ko)
4[

1 + (k/ko)2
]17/6

is a better overall approximation for high-Reynolds-number turbulence. Serious res-
olution problems would have occurred if the von Kármán spectrum had been used
at the inflow. This spectrum is used, however, in LIA to better approximate the real
turbulence. Turbulence amplification across the shock wave is not dependent on the
shape of the upstream spectrum. But the inhomogeneous turbulence evolution down-
stream of the shock (figure 3c) and the one-dimensional spectrum change across the
shock (figure 6) are dependent on the shape of the upstream spectrum. Dependency
of the LIA predictions on the spectrum shape, when it exists, was found not crucial
to the discussions in the present work.

Results from the ENO scheme on two-dimensional shock/turbulence interaction
were compared with the corresponding shock-resolving simulation. The inflow condi-
tions were maintained at M1 = 2.0, Mt = 0.14, and ko = 4 in all cases. The dynamic
viscosity was set to give a Reynolds number ρuo/(µko) = 16.7 at the inflow. The com-
putational domain was discretized by a uniform grid of 48 points in the transverse
direction and a non-uniform grid was used in the streamwise direction for different
shock resolutions for each case. The uniform grid in the transverse directions was fine
enough for turbulence resolution. In the shock-capturing simulation, as the streamwise
grid is refined near the shock wave the computed results approach the shock-resolving
DNS predictions. As the resolution becomes poor, the shock-capturing simulation
could not reproduce the evolutions of transverse velocity and entropy fluctuations of
the corresponding shock-resolving simulation. The minimum grid spacing required by
the ENO scheme was about seven times larger than that used in the shock-resolving
simulation.

Shock front corrugation has a leading-order effect on the modification of trans-
verse velocity fluctuations, while it plays a weaker role in shock-normal component
modification. Therefore, the evolution of transverse velocity fluctuations cannot be
accurately predicted without resolving the corrugation. The shock front inclination
angle scales with upstream turbulence intensity, it = urms/u1. The shock-normal grid
spacing should be refined near the shock wave to yield a grid aspect ratio of
r∆ = ∆x/∆y = O(it) for a shock-resolving (DNS) simulation. In simulations with a
shock-capturing scheme, the relevant length scales are shock corrugation length scale
and turbulence length scales; shock thickness is irrelevant since the shock wave struc-
ture is not resolved but numerically captured. Since the shock corrugation length scale
is comparable to the turbulence length scales (Lee 1992) the solution convergence
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may be described in terms of the shock front corrugation resolution (r∆). Comparable
results can be obtained for the shock-capturing simulation (figure 2a) with a grid
aspect ratio about 7 times larger than necessary in the shock-resolving simulation.

Grid refinement is also necessary to predict thermodynamic fluctuations correctly,
since the convergence of the thermodynamic variables is slowest due to spurious
numerical oscillations in entropy behind the shock wave (Roberts 1990; Meadows,
Caughey & Casper 1993). The spurious oscillations are intrinsic to all the shock-
capturing schemes when applied to a slowly moving shock wave, which travels one
mesh spacing in more than 20 time steps. Since the present simulations are performed
in a coordinate system fixed on the mean shock position, the spurious oscillations
may affect the quality of the shock-capturing simulations. It was found that with the
same resolution the oscillations are more pronounced for a shock-capturing scheme
which gives sharper transitions across the shock wave: more oscillations are observed
for the (less dissipative) Roe scheme than the Lax-Friedrichs scheme. For a given
shock-capturing scheme, fewer entropy oscillations are noticed for a simulation with
the finer grid. Accurate prediction of the interaction of turbulence with a shock wave,
where a shock-resolving simulation is not practical, can only be obtained after a
thorough grid-refinement test.

The assumptions and numerical procedures used in this paper can be summarized
as follows. The fluid is assumed to be an ideal gas with the specific heat ratio,
γ = 1.40. The Prandtl number is assumed constant with Pr = 0.75. The density,
three components of momentum, and the total energy are advanced in time using
a third-order compact-storage Runge–Kutta scheme (Wray 1986). Spatial derivatives
are approximated by the sixth-order ENO scheme only for the inviscid fluxes in the
mean shock-normal direction and within a zone near the shock wave, and by the
sixth-order Padé scheme (Lele 1992) for the other terms and in the other regions. The
ENO scheme is activated over 12 grid points upstream and downstream of the mean
shock wave, which is found sufficient in all cases studied. The simulation is performed
in a coordinate system fixed on the mean shock position, where flow is supersonic
upstream and subsonic downstream. The direction of the mean flow was chosen to
be normal to the shock wave, which was aligned with the x1-axis. At the inflow,
isotropic turbulence is added to the supersonic mean flow. A ‘realistic’ turbulence is
prescribed at the inflow using a data base from a temporally decaying turbulence
(Lee, Lele & Moin 1991b). Special care is taken so that turbulence upstream of
the shock wave is fully developed with proper velocity derivative skewnesses. A
non-reflecting boundary condition (Giles 1990) is applied at the outflow boundary.
Periodic boundary conditions are imposed in the transverse directions due to the
homogeneity of turbulence in these directions. More details on the numerical schemes
can be found in Lee et al. (1992b).

2.2. Linear interaction analysis (LIA)

Some aspects of the interaction of shock waves and turbulence are predictable through
linear analysis. For the linear analysis to apply, the upstream fluctuation must be
a small-amplitude perturbation to the mean upstream state. Furthermore, the time
required for turbulence to pass through the shock wave should be small compared to
the turbulence time scale, ρq2/ε (ε is the dissipation rate of turbulence kinetic energy),
so that there would be insufficient time for the redistribution of energy into different
scales through nonlinear processes.

As a small-amplitude vorticity wave interacts with a shock wave, two other ele-
mentary waves – acoustic and entropic waves – are generated behind the shock wave
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and the vorticity wave is refracted. Through linear analysis, amplitudes, length scales
and orientations of downstream refracted or generated waves can be represented in
terms of those of the upstream vorticity wave. In this work, we employed the linear
interaction analysis (LIA) of Ribner (1953). In LIA, inviscid linear equations for the
disturbances are solved downstream of the shock wave, and the boundary conditions
at the downstream side of the shock front are expressed in terms of the upstream
disturbances by the use of linearized Rankine–Hugoniot relations.

For an upstream elementary vortical wave with u1
ω(x) = û1

ω(k) exp(ik · x), on solving
the appropriate equations the Fourier coefficients of the downstream elementary waves
(refracted and generated) can be obtained as

û2
ω(k) = Π(θ;M1)û

1
ω(k), p̂2(k) = P (θ;M1)û

1
ω(k), ŝ2(k) = Σ(θ;M1)û

1
ω(k),

where uω denotes the solenoidal velocity component, f̂ the Fourier coefficient of f,
and superscripts 1 and 2 denote upstream and downstream conditions, respectively.
The transfer functions Π,P and Σ are functions of upstream mean Mach number
and the angle of incidence (θ) of the elementary wave. Their detailed expressions
may be found in Ribner (1953). In the near field, they also depend on the distance
from the shock wave. However, significant near-field effects occur only within a
distance of one wave length downstream of the shock wave, as is shown in figure 3(c).
The transfer functions carry information not only about amplitudes but also about
propagation directions for the far-field downstream waves. Therefore, downstream
elementary vortical, acoustic, and entropy waves can be obtained for each upstream
elementary wave. Velocity fluctuations associated with acoustic waves can be obtained
assuming linear acoustic wave propagation, and other thermodynamic fluctuations
can be derived from the pressure and entropy fluctuations.

Since upstream turbulence may be approximated as a superposition of vorticity
waves, modification of turbulence through the shock can be predicted via LIA
(Ribner 1954, 1987) by adding up the contributions of the downstream elementary
waves. Modifications of some turbulence statistics previously reported (Ribner 1987;
Lee et al. 1993) are reproduced in the present paper for completeness.

3. Results and discussion
The primary parameters in the simulation are the mean Mach number (M1),

the fluctuation Mach number (Mt), and the turbulence Reynolds number based
on the Taylor microscale (Reλ) upstream of the shock wave. In the simulation, all
turbulence scales are fully resolved, while the effect of the shock wave on turbulence
is captured (rather than fully resolved). Three simulations with M1 = 1.5, 2.0 and
3.0 are conducted for the interaction with strong shock waves, and the results from
shock-resolving simulations (Lee et al. 1993) for the interaction with a weak shock
wave (M1 = 1.05, 1.1, 1.2) are quoted for comparison. Since the shock wave thickness
is not meaningful in a linear analysis and in a shock-capturing simulation, turbulence
length scales are the only physical length scales. In discussing the results from the
simulation the turbulence length scale measure (k−1

o ) is used as the reference length
scale. Table 1 lists the simulation parameters, where the values of Mt and Reλ are
taken at the location immediately upstream of the shock.

3.1. Velocity fluctuations

The interaction of turbulence with a shock wave generates acoustic waves downstream
of the shock, some of which undergo rapid decay (Ribner 1953). LIA predicts that
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Case M1 Mt Reλ ko

A 1.5 0.0897 15.7 4.0
B 2.0 0.108 19.0 4.0
C 3.0 0.110 19.7 4.0

Table 1. Simulation parameters

turbulent kinetic energy is amplified across the shock wave and the evanascent
acoustic waves contribute significantly to the streamwise fluctuations just behind the
shock wave. Figure 3(a) shows the evolution of the diagonal components of the

Reynolds stress tensor, Rij = ũ′′i u
′′
j . The off-diagonal components (not shown) stay

close to zero over the entire flow field since turbulence is isotropic upstream and
axisymmetric downstream of the shock. The streamwise component of turbulence
intensity in the shock region contains the intermittency effects due to the oscillations
of the shock (for more details on the intermittency effects on turbulence statistics, see
Lee et al. 1992b). The boundaries of the shock oscillations are defined as the locations
where mean dilatation du1/dx1 = 0; du1/dx1 is negative inside the shock wave and
slightly positive away from the shock due to viscous heating. All components of the
velocity fluctuations are enhanced during the interaction. The velocity fluctuations are
axisymmetric behind the shock, and their return to isotropy is negligible compared
to the decay. Due to the evanescent acoustic waves the velocity fluctuations evolve
rapidly just downstream of the shock wave. Away from the shock wave, however, all
the velocity fluctuations decay monotonically due to viscous dissipation.

The Mach number dependence of the far-field velocity fluctuation amplification
predicted by LIA is shown in figure 3(b). All components of the velocity fluctuation
are amplified across the shock wave, and the amplification of TKE tends to satu-
rate beyond M1 = 3.0. The shock-normal component is amplified more for shock
waves with M1 < 2.0 while the opposite is true for M1 > 2.0. In DNS, the stream-
wise velocity fluctuation away from the shock is larger than the transverse velocity
fluctuations, which seemingly contradicts the LIA prediction. However, comparing
low-Reynolds-number DNS results directly with the inviscid linear analysis may not
be appropriate. The inviscid terms in the TKE transport equation are dominant
only in the region immediately downstream of the shock wave, beyond which the
viscous terms are significant (Lee et al. 1993). The monotonic viscous decay rate
of the transverse components are found to be significantly higher than that of the
streamwise component. After the viscous decay is compensated for by extrapolating
the downstream monotonic decay back to the shock location, the DNS results are
found to be consistent with the LIA prediction.

The rapid downstream evolution of velocity fluctuations which was observed for
weak shock/turbulence interaction (Lee et al. 1992b) persists in the present simulations
with stronger shocks. The evolution of the velocity fluctuations downstream of the
shock wave predicted by LIA is shown in figure 3(c), which reproduces the main
feature of the rapid evolution from the DNS. Hence, the rapid TKE evolution behind
the shock wave can be explained mainly as a linear process. This rapid evolution
in the streamwise velocity fluctuation is due to a correlation between the vortical
and evanescent acoustic fluctuations behind the shock wave. The acoustic velocity
fluctuations and vortical velocity fluctuations are anti-correlated just behind the shock,
and the correlation between the two fluctuations decreases rapidly as the amplitude



234 S. Lee, S. K. Lele and P. Moin

2.5

2.0

1.0

0.5

0 5 10 15 20 25

(a)

( 1.5

2.25

2.00

1.50

1.25

2 4 6 8 10

(b)

(

u««α2

uo
2

1.75

M1

2.5

2.0

1.0

0.5

0 5 10 15 20 25

(c)

(

u««2

uo
2

1.5

u««2

uo
2

1.00

ko x1

ko x1

Figure 3. For caption see facing page.
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of the acoustic wave decays exponentially away from the shock wave. In previous
studies (Lee et al. 1991a, 1992a, 1993), the correlations between vortical and acoustic
waves were not properly accounted for, and the prediction capability of the linear
analysis was not fully appreciated.

Further insight into the rapid evolution of velocity fluctuations is revealed by the
equation for energy balance satisfied by linearized disturbances (e.g. Thompson 1985).
The continuity and momentum equations for the linearized fluctuating components
can be written as

∂ρ′

∂t
+ ũk

∂ρ′

∂xk
+ ρ

∂u′′k
∂xk

= 0,

∂u′′i
∂t

+ ũk
∂u′′i
∂xk

+
1

ρ

∂p′

∂xi
− ∂σ′′ik
∂xk

= 0

by assuming that there exist no mean flow gradients, where ρσ′′ij(= τ′′ij) denotes the
viscous stress. For an ideal gas the linearized equation of state gives the density
fluctuation in terms of the pressure and entropy (s) fluctuations as

ρ′

ρ
=

1

γ

p′

p
− s′

cp
, (1)

where cp is the specific heat at constant pressure. Multiplying the continuity equation
by ρ′, contracting the momentum equations by u′′i , and cancelling density–dilatation
correlation by using the above thermodynamic relation and neglecting the entropy
fluctuation effect (−s′u′′i,i/cpc), gives the following equation (in the averaged form):

∂

∂x1

[
ũ1

c
(
u′′i u

′′
i

2c2
+
ρ′2

2ρ2
) +

1

γ

p′u′′1
p c

]
− u′′i
c3

∂σ′′ik
∂xk

= 0.

With this relation, the rapid post-shock evolution noted earlier in figure 3(a) can
be explained in terms of the energy balance for linearized disturbances. Entropy
and acoustic (or dilatation) modes are perfectly decorrelated for small-amplitude
fluctuations (Kovásznay 1953) in the linear limit. The DNS data shown in figure 4(a)
confirm that the correlation between the entropy fluctuations and dilatation decays
rapidly downstream of the shock and its maximum contribution to the energy balance
is less than 5% of the pressure transport term.

The energy balance equation integrated in the streamwise direction from a location
(xs) downstream of the shock up to a location (x) further downstream gives∥∥∥∥ ũ1

c

u′′i u
′′
i

2c2

∥∥∥∥x1

xs︸ ︷︷ ︸
A

+

∥∥∥∥ ũ1

c

ρ′2

2ρ2

∥∥∥∥x1

xs︸ ︷︷ ︸
B

+

∥∥∥∥1

γ

p′u′′1
p c

∥∥∥∥x1

xs︸ ︷︷ ︸
C

−
∫ x1

xs

u′′i
c3

∂σ′′ik
∂xk

dx1︸ ︷︷ ︸
D

= 0,

where ‖f‖ba = f(b)− f(a). Terms labelled in this equation are shown in figure 4(b). In

Figure 3. (a) Evolution of the normal components of the Reynolds stress: lines for M1 = 2.0, and
symbols for M1 = 3.0. , • , R11; , × , R22; , + , R33. Vertical lines denote the
boundaries of shock intermittency. (b) Amplification of velocity fluctuation variances across the

shock wave predicted by LIA far away from the shock. , q2/q2
o; , ũ′′1

2; , ũ′′2
2, ũ′′3

2.
(c) Evolution of velocity fluctuation variances behind the shock wave predicted by LIA (M1 = 2.0)

using the spectrum with exponential fall-off used in the DNS. , ũ′′1
2; , ũ′′2

2, ũ′′3
2.
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shock intermittency. (b) Evolution of the integrated quantities from the acoustic energy balance for
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all the cases we investigated (with different shock strengths and upstream turbulence
intensities) the energy budget is balanced with little deviation. The sum of scaled
density and velocity fluctuations is found to be mainly compensated by the pressure
transport. Therefore, the rapid evolution of velocity fluctuations can be attributed
to an energy transfer from the acoustic potential energy in the form of density (or
pressure) fluctuations to turbulent kinetic energy through the pressure transport. The
pressure-transport term also scaled best by flow variables associated with acoustic
fluctuations (Lee et al. 1993).

Variance of vorticity fluctuations is the main contributor to the TKE dissipation
rate. Figure 5(a) shows the evolution of vorticity components. The transverse com-
ponents are amplified across the shock, while the streamwise component is hardly
affected. Downstream of the shock the streamwise vorticity fluctuations increase. This
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Figure 5. (a) Evolution of the vorticity fluctuation variances (M1 = 2.0): , ω′1
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2;

, ω′3
2. (b) Amplification of transverse vorticity fluctuation variances predicted by LIA.

is a nonlinear process occurring as the intensified vorticity in the x2- and x3-directions
is tilted and stretched by turbulent fluctuations. The Mach number dependence of
transverse vorticity variance amplification is shown in figure 5(b). LIA predicts no am-
plification of the streamwise component. Vorticity is amplified more for the stronger
shock wave, and the amplification saturates rather slowly compared to the TKE
amplification (figure 3b). The amplification ratios obtained from DNS are found to
be consistent with the LIA predictions to within 5%.

3.2. Turbulence length scales

Experimental studies (Honkan & Andreopoulos 1992; Debieve & Lacharme 1986;
Keller & Merzkirch 1990) have reported that large-scale turbulent motions are
enhanced more than small-scale motions as turbulence passes through a shock wave,
leading to the overall increase of turbulence length scales, especially of microscales.
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However, LIA predicts that Taylor microscales decrease across the shock wave for
all shock strengths, which was confirmed by DNS for weak shock waves (Lee et al.
1991a, 1993). For weak shock waves, changes in some turbulence length scales were
too small to provide definite trends.

To investigate the scale-dependent amplification of turbulence, the modification
of power spectra across the shock wave (M1 = 2.0) is computed by LIA for the
one-dimensional far-field energy spectrum in the shock-normal (longitudinal) and
transverse directions which are shown in figure 6. The spectrum, Eα(kβ), is defined

as the spectral energy density of u′α
2 at kβ , where kβ is the wavenumber in the

xβ-direction, so that

u′α
2 =

∫ ∞
0

Eα(kβ)dkβ.

In the longitudinal spectra, significant scale-dependent amplification is observed: more
amplification at small scales than at large scales. The large-scale part of E2(k1) is even
suppressed through the interaction. In the transverse spectra, more amplification at
small scales is found for E1(k2) and E2(k2), while more amplification at large scales
is found for E3(k2). Since the amplification pattern is different for different spectra
(e.g. E1(k2) or E3(k2)), the issue of length scale change should be addressed separately
for each specific length scale. In the following, changes in various turbulence length
scales are discussed.

Transverse spectra of velocity fluctuations in the numerically simulated field for
M1 = 2.0 are shown for upstream and downstream of the shock wave in figure 7. The
amplification is more pronounced at the large wavenumbers, which is consistent with
the prediction by the linear analysis in figure 6(b). More direct comparison could not
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be made since the inflow turbulence spectrum used in the simulation is different from
the one used in LIA.

Keller & Merzkirch (1990) reported that both the integral length scale based on
density fluctuations and the density microscale in a transverse direction increase
for shock waves with M1 < 1.24. In the present simulation, the spectral changes
of density and temperature fluctuations across the shock are found to be similar
to those of velocity fluctuations: spectra are amplified more at small scales than
at large scales. The experimental study of Keller & Merzkirch (1990) invokes the
assumptions of turbulence isotropy/homogeneity and negligible pressure fluctuations
for data analysis, whose validity is in doubt. The present simulations show that the
velocity fluctuation variances are axisymmetric (downstream of the shock) as shown
in §3.1, and thermodynamic property fluctuations are not isobaric and decay rapidly
behind the shock wave as shown in §3.3. The effect of these assumptions on the
experimental results has not been investigated and it seems unlikely that they would
cause an erroneous increase in the measured microscales.

The auto-correlation of a turbulence quantity f′ in the x2-direction, Cf(r; x1), is
defined as

Cf(r; x1) =
f′(x1, x2, x3, t)f′(x1, x2 + r, x3, t)

f′2(x1, x2, x3, t)
,

where the average is taken over time and homogeneous directions (x2- and x3-
directions). The integral scale (Λf) is, then, defined as

Λf(x1) =

∫ ∞
0

Cf(r; x1)dr,

where the upper limit of the integration is replaced by L/2 when dealing with
a numerically simulated field with L being the computational box size in the x2-
direction, where a periodic boundary condition is enforced. Figure 8 shows the
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evolution of four integral scales in the transverse direction throughout the flow field.
Three integral scales (Λu1

, Λu2
, and Λρ) undergo reductions across the shock wave,

most significantly in Λu2
by about 45%, while Λu3

increases across the shock by about
30%. Mach number dependence of the integral length scale change was predicted
by LIA. For the shock wave with M1 = 2.0, the ratio of the downstream to the
upstream integral length scale (with the von Kármán upstream spectrum) is 0.91,
0.60, 1.46 for Λu1

, Λu2
, and Λu3

, respectively. The simulation results agree well with the
LIA predictions considering the difference in the upstream energy spectrum shape.
(Integral length scales are spectra-dependent.)

Figure 9(a) shows the evolution of Taylor microscales (λα) and the transverse
density microscale (λρ), which are defined as

λα =
(u′α

2)1/2

(u′α,α
2)1/2

and λρ =
(ρ′2)1/2

(ρ′,2
2)1/2

,

respectively. All the microscales decrease significantly across the shock wave: the
streamwise Taylor microscale by about 50%, the transverse Taylor microscales by
about 20%, and the density microscale by about 30%. The Mach number dependence
of Taylor microscale changes predicted by LIA are shown in figure 9(b). The higher
the Mach number, the larger is the reduction of the Taylor microscales through the
shock wave. The reduction is more pronounced in the shock-normal direction. The
reductions observed in the simulation agree well with the LIA prediction. The exper-
imental result indicating a Taylor microscale increase (Debieve & Lacharme 1986)
referred to time scale, not length scale (J. F. Debieve 1992, personal communication).
If the mean velocity decrease across the shock is properly accounted for in the use
of Taylor’s hypothesis, these experimental results are found to be consistent with the
present simulation and analysis.

The most widely used length scale in turbulence modelling is the dissipation length
scale (lε), defined as

lε = ρq3/ε,

where ε is the dissipation rate of turbulence kinetic energy, which includes contribu-
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tions from both solenoidal and dilatational motions. Figure 10 shows the evolution
of the dissipation length scale. The dissipation length scale also decreases across the
shock wave. Just behind the shock wave, lε undergoes a rapid increase similar to
the streamwise Taylor microscale (figure 9a), due to the rapid decay of the acoustic
waves (or the dilatational motions). The Mach number dependence of the dissipation
length scale change predicted by LIA is presented in figure 9(b). The length scale is
reduced for stronger shock waves, while it shows a mild increase for shock waves
with M1 < 1.65. For weak shock waves, TKE and its dissipation rate are comparably
amplified to give a slight increase in lε across the shock wave, while at higher Mach
numbers TKE amplification saturates much faster than vorticity variance amplifica-
tion to give the reduction in the length scale (see figures 3b and 5b). The dissipation
length scale increase observed by Honkan & Andreopoulos (1992) at M1 = 1.24
(the equivalent shock normal Mach number in their experiment is 1.24 mistakenly
reported as 1.62) might be explained as the phenomenon occurring for weak shock
waves. However, the experimental results are not in quantitative agreement with the
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Figure 10. Evolution of the dissipation length scale (lε) throughout the computational domain for
M1 = 3.0. Vertical lines denote the boundaries of shock intermittency.

simulation and analysis: LIA predicts less than 10% increase, while the experimental
data show more than 600% increase. We know that neglecting pressure fluctuations
and application of Taylor’s hypothesis in high-intensity turbulence are not in ac-
cordance with DNS results. Behind the shock wave, the turbulence intensity level
was as high as 25% with large pressure fluctuations; under these conditions Taylor’s
hypothesis is no longer applicable (Lee et al. 1992a). Furthermore, the presence of
significant upstream pressure fluctuations in the experiment would have an effect on
the differences in turbulence modification (Hannappel & Friedrich 1994; Mahesh et
al. 1995). However, it is unlikely that these assumptions explain the large discrepancies
between simulations and experiments.

The experiments conducted so far are not accurate enough to be compared with the
simulations, and more refined experiments are planned (J. Keller 1993; J. Andreopou-
los 1994, personal communications). Very recently results from new experiments on
the interaction of quasi-homogeneous turbulence with a normal shock wave at M1 = 3
have been reported by Barre et al. (1996). A multi-nozzle array of 625 (25 by 25)
small Mach 3 nozzles was used in the experiment to generate quasi-homogeneous
turbulence, and the normal shock was generated by the Mach reflection between
the oblique shocks generated by a pair of wedges placed in the flow. Turbulence
amplification in rough accord with Ribner’s theory and the axisymmetric nature of
the turbulence downstream of the interaction zone were noted. The experiment also
showed that the longitudinal integral length scale decreased by a factor close to 7
across the shock and the lateral integral scale was unaffected. These trends are in
qualitative agreement with those found in the present paper. However, the rather
large length scale reduction which exceeds the density ratio (3.8 at M1 = 3) casts
some doubts on the quantitative accuracy of the measurements.

3.3. Thermodynamic quantities

Thermodynamic fields which are obtained in freely decaying turbulence (Lee et al.
1991b) and prescribed at the inflow of the present calculations are nearly isentropic.
As the flow passes through the shock wave, all the fluctuations are amplified, fol-
lowed by decay. A polytropic assumption is generally used for the relation between
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thermodynamic fluctuations

p′

p
= n

ρ′

ρ
=

n

n− 1

T ′′

T̃
,

where n is the polytropic exponent. For polytropic fluctuations, specification of
one property fluctuation and the polytropic exponent is sufficient to describe all
the thermodynamic fluctuations. Based on the above relations, different polytropic
exponents can be defined using normalized r.m.s. fluctuations (npρ, nρT ) and the
correlations between instantaneous fluctuations (cρT ) as

npρ =
(p′2)1/2/p

(ρ′2)1/2/ρ
, nρT = 1 +

(T ′2)1/2/T

(ρ′2)1/2/ρ
,

and

cρT = 1 +
ρ

T̃

ρ′T ′′

ρ′2
.

For weak shock waves with M1 6 1.20, thermodynamic property fluctuations are
close to isentropic (n = γ) throughout the flow field (Lee et al. 1993; Rusak & Cole
1993).

The polytropic exponents, npρ and nρT , are plotted in figure 11. If the fluctuations are
indeed polytropic, the two exponents should be the same. This is observed upstream
of the shock wave with npρ = nρT ' γ. Downstream of the shock wave, however, they
differ significantly with npρ decreasing and nρT increasing. Their return to polytropy is
very slow. The evolution of cρT is also shown in figure 11. Upstream of the shock wave,
it is nearly equal to γ(= 1.40). It drops significantly across the shock wave, and its
further evolution is rather slow. The changes in the exponents across the shock wave
are found to be consistent with the LIA prediction (shown in figure 12). Upstream
thermodynamic fluctuations are polytropic (close to isentropic), and downstream
fluctuations are not isentropic due to significant entropy fluctuations produced by the
shock/turbulence interaction. To properly describe the thermodynamic fluctuations
in strong shock/turbulence interaction, specification of at least one thermodynamic
fluctuation along with two exponents (i.e. npρ and nρT ) are required.
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The effect of shock strength on thermodynamic fluctuations for a wider range of
shock normal Mach numbers can be easily investigated through the linear analysis.
In the following, polytropic exponents downstream of the shock in the interaction
of solenoidal velocity fluctuations with a shock wave are examined. The effects of
the shock strength on downstream polytropic exponents are shown in figure 12. For
isentropic or acoustic fluctuations, all exponents are the same and equal to the spe-
cific heat ratio. For entropic or isobaric fluctuations, npρ and cρT become 0 and nρT
becomes 2. For weak shock waves with M1 < 1.2, thermodynamic fluctuations behind
the shock can be regarded as isentropic. As the shock becomes stronger, the entropy
fluctuations behind the shock cannot be neglected, and their importance increases
for stronger shock waves. The results of the polytropic exponents from DNS are
consistent with LIA predictions, with the values from DNS systematically deviating
from the LIA predictions toward the isentropic value of 1.4. This may be due to
‘incompressible’ pressure fluctuations associated with dilatation-free velocity fluctua-
tions (Sarkar et al. 1991), with accompanying (approximately isentropic) fluctuations
in other thermodynamic quantities.

In order to quantify the significance of entropy fluctuations behind the shock
wave, the contribution of entropic fluctuations to the density fluctuations by the
linear analysis is shown in figure 12. Since the acoustic fluctuations and entropic
fluctuations are completely decorrelated in the linear limit, the relative significance of
entropy fluctuations (is) can be expressed as

is =
s′2/c2

p

ρ′2/ρ2

using equation (1). For weak shock waves with M1 < 1.2, entropy fluctuations
contribute less than 2% to the density fluctuations. However, entropy fluctuations
become more significant than acoustic fluctuations beyond M1 = 1.65.

In summary, thermodynamic fluctuations downstream of the shock wave are found
to be isentropic for weak shock waves (M1 < 1.2) and become non-polytropic for
stronger shock waves, where the importance of entropy fluctuations is comparable to
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that of the acoustic fluctuations. The thermodynamic fluctuations cannot be modelled
using a single polytropic exponent in this regime. Therefore, acoustic and entropic
fluctuations should be modelled separately. Zeman (1993) stressed the need for such
a separation for the mean thermodynamic quantities.

4. Conclusion
A shock-capturing scheme is developed for the simulation of the interaction of

isotropic turbulence with shock waves. A modified version of sixth-order essentially
non-oscillatory (ENO) scheme was used. Direct numerical simulation was performed
for turbulence interacting with shock waves with M1 = 1.5, 2.0 and 3.0, where turbu-
lence is fully resolved and the shock wave is captured.

Turbulence kinetic energy is amplified across the shock wave, and the amount of
turbulence amplification is consistent with linear analysis. The streamwise velocity
fluctuations undergo rapid evolution just behind the shock wave, which can be
interpreted as the energy transfer from pressure fluctuations to velocity fluctuations
via pressure transport in the shock-normal direction.

The energy spectrum amplification pattern is found to be different for different
spectra, and the length scale change across the shock depends on the length scale
definition. Most length scales decrease across the shock wave, which confirms the
results of LIA and those of shock-resolving simulations with M1 6 1.20. However,
the dissipation length scale and a transverse integral length scale are found to increase
slightly in a certain range of shock strengths.

Thermodynamic fluctuations downstream of the shock wave are found to be non-
polytropic for strong shock waves, while isentropic fluctuations are found for weak
shock waves withM1 6 1.20. Linear analysis predicts that thermodynamic fluctuations
behind the shock contain significant entropy fluctuations leading to non-polytropic
behaviour for strong shock waves. The entropy fluctuations are more significant than
the acoustic fluctuations beyond M1 = 1.65.

Strikingly, linear theory is found to successfully reproduce most features observed
in the interaction of isotropic vortical turbulence with a shock wave, including
downstream turbulence evolution and turbulence modification across the shock wave.
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